Abstract

Research Article

Pharmacological Manipulation of the Aging Pathways to Effect Health Span and Lifespan with Special Reference to SGLT2 Inhibitors as Powerful Anti-aging Agents in Humans

David K Murdock*

Published: 30 October, 2024 | Volume 8 - Issue 1 | Pages: 011-025

Calorie restriction has been shown to slow the aging process in numerous organisms including primates. Caloric excess states, such as type 2 diabetes, are associated with accelerated aging and the incidence and severity of chronic diseases. The nutrient-sensing pathways and intestinal microbiome are important systems that affect aging and chronic disease development. This manuscript reviews the various pathways involved with aging and chronic disease development and examines the pharmacological manipulation of these systems which appear to slow aging and the chronic diseases of aging in experimental model organisms and collaborating human data when available. Finally, the abundance of experimental and human data suggesting the newer diabetic medications, the sodium-glucose transport inhibitors, are potent anti-aging agents is provided.

Read Full Article HTML DOI: 10.29328/journal.ibm.1001028 Cite this Article Read Full Article PDF

Keywords:

Aging; Chronic diseases of aging; SGLT2 inhibitors

References

  1. Modern biological theories of aging. Aging Dis. 2010;1(2):72-74. Available from: https://pubmed.ncbi.nlm.nih.gov/21132086/
  2. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194-217. Available from: https://doi.org/10.1016/j.cell.2013.05.039
  3. Rous P. The influence of diet on transplanted and spontaneous mouse tumors. J Exp Med. 1914;20:433–451. Available from: https://doi.org/10.1084/jem.20.5.433
  4. Osborne TB, Mendel LB, Ferry EL. The effect of retardation of growth upon the breeding period and duration of life of rats. Science. 1917;45:294–295. Available from: https://doi.org/10.1126/science.45.1160.294
  5. Loeb J, Northrop JH. What determines the duration of life in metazoa? Proc Natl Acad Sci USA. 1917;3:382–386. Available from: https://doi.org/10.1073/pnas.3.5.382
  6. McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size. J Nutr. 1935;10:63–79. Available from: https://doi.org/10.1093/jn/10.1.63
  7. Yu BP, Masoro EJ, Murata I, Bertrand HA, Lynd FT. Life span study of SPF Fischer 344 male rats fed ad libitum or restricted diets: longevity, growth, lean body mass, and disease. J Gerontol. 1982;37:130–141. Available from: https://doi.org/10.1093/geronj/37.2.130
  8. Guarente L. Calorie restriction and SIR2 genes–towards a mechanism. Mech Ageing Dev. 2005;126:923–928. Available from: https://doi.org/10.1016/j.mad.2005.03.013
  9. Partridge L, Piper MD, Mair W. Dietary restriction in Drosophila. Mech Ageing Dev. 2005;126:938–950. Available from: https://doi.org/10.1016/j.mad.2005.03.023
  10. Houthoofd K, Vanfeteren JR. Longevity effect of dietary restriction in Caenorhabditis elegans. Exp Gerontol. 2006;41:1026–1032. Available from: https://doi.org/10.1016/j.exger.2006.05.007
  11. Ingle L, Wood TR, Banta AM. A study of longevity, growth, reproduction, and heart rate in Daphnia longispina as influenced by limitation in quantity of food. J Exp Zool. 1937;76:325–352. Available from: https://ui.adsabs.harvard.edu/link_gateway/1937JEZ....76..325I/doi:10.1002/jez.1400760206
  12. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science. 2009;325:201–204. Available from: https://doi.org/10.1126/science.1173635
  13. Willcox DC, Willcox BJ, Todoriki H, Suzuki M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009;28:500S-516S. Available from: https://doi.org/10.1080/07315724.2009.10718117
  14. Franco-Juárez B, Gómez-Manzo S, Hernández-Ochoa B, Cárdenas-Rodríguez N, Arreguin-Espinosa R, Pérez de la Cruz V, et al. Effects of high dietary carbohydrate and lipid intake on the lifespan of C. elegans. Cells. 2021;10(9):2359. Available from: https://doi.org/10.3390/cells10092359
  15. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444(7117):337-342. Available from: https://doi.org/10.1038/nature05354
  16. Tam BT, Morais JA, Santosa S. Obesity and ageing: two sides of the same coin. Obes Rev. 2020;21(4). Available from: https://doi.org/10.1111/obr.12991
  17. Aune D, Sen A, Prasad M, Norat T, Janszky I, Tonstad S, et al. BMI and all-cause mortality: systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. BMJ. 2016;353:12156. Available from: https://doi.org/10.1136/bmj.i2156
  18. Bahour N, Cortez B, Pan H, Shah H, Doria A, Aguayo-Mazzucato C. Diabetes mellitus correlates with increased biological age as indicated by clinical biomarkers. Geroscience. 2022;44(1):415-427. Available from: https://doi.org/10.1007/s11357-021-00469-0
  19. Burton D, Faragher R. Obesity and type-2 diabetes as inducers of premature cellular senescence and ageing. Biogerontology. 2018;19:447–459. Available from: https://doi.org/10.1007/s10522-018-9763-7
  20. Morley JE. Diabetes and aging: epidemiologic overview. Clin Geriatr Med. 2008;24(3):395-405. Available from: https://doi.org/10.1016/j.cger.2008.03.005
  21. Hwangbo DS, Lee HY, Abozaid LS, Min YJ. Mechanisms of lifespan regulation by calorie restriction and intermittent fasting in model organisms. Nutrients. 2020;12(4):1194. Available from: https://doi.org/10.3390/nu12041194
  22. Newsholme P, Krause M. Nutritional regulation of insulin secretion: implications for diabetes. Clin Biochem Rev. 2012;33(2):35-47. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC3387883/
  23. Ketelslegers JM, Maiter D, Maes M, Underwood LE, Thissen JP. Nutritional regulation of insulin-like growth factor-I. Metabolism. 1995;44(10 Suppl 4):50-57. Available from: https://doi.org/10.1016/0026-0495(95)90221-x
  24. Yoon MS. The role of mammalian target of rapamycin (mTOR) in insulin signaling. Nutrients. 2017;9(11):1176. Available from: https://doi.org/10.3390/nu9111176
  25. Heemst DV. Insulin, IGF-1, and longevity. Aging Dis. 2010;1(2):147-157. Available from: https://pubmed.ncbi.nlm.nih.gov/22396862/
  26. Altintas O, Park S, Lee S-JV. The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep. 2016;49:81–92. Available from: https://doi.org/10.5483/bmbrep.2016.49.2.261
  27. Kolb H, Kemp K, Martin S. Insulin and aging – a disappointing relationship. Front Endocrinol. 2023;14:1261298. Available from: https://doi.org/10.3389/fendo.2023.1261298
  28. Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168(6):960-976. Available from: https://doi.org/10.1016/j.cell.2017.02.004
  29. Papadopoli D, Boulay K, Kazak L, Pollak M, Mallette F, Topisirovic I, et al. mTOR as a central regulator of lifespan and aging. F1000Res. 2019;8. Available from: https://doi.org/10.12688/f1000research.17196.1
  30. Stallone G, Infante B, Prisciandaro C, Grandaliano G. mTOR and aging: an old fashioned dress. Int J Mol Sci. 2019;20(11):2774. Available from: https://doi.org/10.3390/ijms20112774
  31. Long YC, Zierath JR. AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest. 2006;116(7):1776-1783. Available from: https://doi.org/10.1172/jci29044
  32. Sadria M, Layton AT. Interactions among mTORC, AMPK, and SIRT: a computational model for cell energy balance and metabolism. Cell Commun Signal. 2021;19:57. Available from: https://doi.org/10.1186/s12964-021-00706-1
  33. Kelly G. A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 1. Altern Med Rev. 2010;15(3):245-263. Available from: https://pubmed.ncbi.nlm.nih.gov/21155626/
  34. Yamamoto H, Schoonjans K, Auwerx J. Sirtuin functions in health and disease. Mol Endocrinol. 2007;21(8):1745–1755. Available from: https://doi.org/10.1210/me.2007-0079
  35. Aravind L, Zhang D, de Souza RF, Anand S, Iyer LM. The natural history of ADP-ribosyltransferases and the ADP-ribosylation system. Curr Top Microbiol Immunol. 2015;384:3-32. Available from: https://doi.org/10.1007/82_2014_414
  36. Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999;13(19):2570–2580. Available from: https://genesdev.cshlp.org/content/13/19/2570.short
  37. Dall KB, Færgeman NJ. Metabolic regulation of lifespan from a C. elegans perspective. Genes Nutr. 2019;14:25. Available from: https://genesandnutrition.biomedcentral.com/articles/10.1186/s12263-019-0650-x
  38. Newman JC, Covarrubias AJ, Zhao M, Yu X, Gut P, Ng CP, et al. Ketogenic diet reduces midlife mortality and improves memory in aging mice. Cell Metab. 2017;26(3):547-557.e8. Available from: https://doi.org/10.1016/j.cmet.2017.08.004
  39. Roberts MN, Wallace MA, Tomilov AA, Zhou Z, Marcotte GR, Tran D, et al. A ketogenic diet extends longevity and healthspan in adult mice. Cell Metab. 2017;26(3):539-546.e5. Available from: https://doi.org/10.1016/j.cmet.2017.08.005
  40. Edwards C, Canfield J, Copes N, Rehan M, Lipps D, Bradshaw PC. D-beta-hydroxybutyrate extends lifespan in C. elegans. Aging (Albany NY). 2014;6(8):621-644. Available from: https://doi.org/10.18632/aging.100683
  41. Han YM, Ramprasath T, Zou MH. β-Hydroxybutyrate and its metabolic effects on age-associated pathology. Exp Mol Med. 2020;52:548–555. Available from: https://doi.org/10.1038/s12276-020-0415-z
  42. Bae HR, Kim DH, Park MH, Lee B, Kim MJ, Lee EK, et al. β-Hydroxybutyrate suppresses inflammasome formation by ameliorating endoplasmic reticulum stress via AMPK activation. Oncotarget. 2016;7(41):66444-66454. Available from: https://doi.org/10.18632/oncotarget.12119
  43. Gómora-García JC, Montiel T, Hüttenrauch M, Salcido-Gómez A, García-Velázquez L, Ramiro-Cortés Y, et al. Effect of the ketone body, D-β-hydroxybutyrate, on Sirtuin2-mediated regulation of mitochondrial quality control and the autophagy-lysosomal pathway. Cells. 2023;12(3):486. Available from: https://doi.org/10.3390/cells12030486
  44. Allison J, Kaliszewska A, Uceda S, Reiriz M, Arias N. Targeting DNA methylation in the adult brain through diet. Nutrients. 2021;13(11):3979. Available from: https://doi.org/10.3390/nu13113979
  45. Ungaro P, Nettore IC, Franchini F, Palatucci G, Muscogiuri G, Colao A, et al. Epigenome modulation induced by ketogenic diets. Nutrients. 2022;14(15):3245. Available from: https://doi.org/10.3390/nu14153245
  46. Wang L, Chen P, Xiao W. β-Hydroxybutyrate as an anti-aging metabolite. Nutrients. 2021 Sep 28;13(10):3420. Available from: https://doi.org/10.3390/nu13103420
  47. Newman JC, Verdin E. β-Hydroxybutyrate: a signaling metabolite. Annu Rev Nutr. 2017 Aug 21;37:51-76. Available from: https://doi.org/10.1146/annurev-nutr-071816-064916
  48. Bartel DP. Metazoan microRNAs. Cell. 2018;173(1):20–51. Available from: https://doi.org/10.1016/j.cell.2018.03.006
  49. Cannataro R, Caroleo MC, Fazio A, La Torre C, Plastina P, Gallelli L, Lauria G, Cione E. Ketogenic diet and microRNAs linked to antioxidant biochemical homeostasis. Antioxidants (Basel). 2019;8(8):269. Available from: https://doi.org/10.3390/antiox8080269
  50. Hou W, Liu G, Ren X, Liu X, He L, Huang H. Quantitative proteomics analysis expands the roles of lysine β-hydroxybutyrylation pathway in response to environmental β-hydroxybutyrate. Oxid Med Cell Longev. 2022;2022:4592170. Available from: https://doi.org/10.1155/2022/4592170
  51. García-Velázquez L, Massieu L. The proteomic effects of ketone bodies: implications for proteostasis and brain proteinopathies. Front Mol Neurosci. 2023;16:1214092. Available from: https://doi.org/10.3389/fnmol.2023.1214092
  52. Huang H, Zhang D, Weng Y, Delaney K, Tang Z, Yan C, Qi S, Peng C, Cole PA, Zhao Y. The regulatory enzymes and protein substrates for the lysine β-hydroxybutyrylation pathway. Sci Adv. 2021;7. Available from: https://doi.org/10.1126/sciadv.abe2771
  53. Han YM, Ramprasath T, Zou MH. β-Hydroxybutyrate and its metabolic effects on age-associated pathology. Exp Mol Med. 2020;52(4):548-555. Available from: https://www.nature.com/articles/s12276-020-0415-z
  54. Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev. 2012;70(8):440-454. Available from: https://doi.org/10.1111/j.1753-4887.2012.00493.x
  55. Ho JT, Chan GC, Li JC. Systemic effects of gut microbiota and its relationship with disease and modulation. BMC Immunol. 2015;16:21. Available from: https://doi.org/10.1186/s12865-015-0083-2
  56. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7(3):189-200. Available from: https://doi.org/10.1080/19490976.2015.1134082
  57. Kim CH. Complex regulatory effects of gut microbial short-chain fatty acids on immune tolerance and autoimmunity. Cell Mol Immunol. 2023;20:341–350. Available from: https://www.nature.com/articles/s41423-023-00963-0
  58. Wang WL, Xu SY, Ren ZG, Tao L, Jiang JW, Zheng SS. Application of metagenomics in the human gut microbiome. World J Gastroenterol. 2015;21(3):803-814. Available from: https://doi.org/10.3748/wjg.v21.i3.803
  59. Human Microbiome Project Consortium. Structure, function, and diversity of the healthy human microbiome. Nature. 2012;486:207–214. Available from: https://doi.org/10.1038/nature11234
  60. Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375:2369–2379. Available from: https://doi.org/10.1056/NEJMra1511570
  61. Walker AW, Lawley TD. Therapeutic modulation of intestinal dysbiosis. Pharmacol Res. 2013;69(1):75-86. Available from: https://doi.org/10.1016/j.phrs.2012.09.008
  62. Vijay A, Valdes AM. Role of the gut microbiome in chronic diseases: a narrative review. Eur J Clin Nutr. 2022;76(4):489-501. Available from: https://doi.org/10.1038/s41430-021-00991-6
  63. Al Samarraie A, Pichette M, Rousseau G. Role of the gut microbiome in the development of atherosclerotic cardiovascular disease. Int J Mol Sci. 2023;24(6):5420. Available from: https://doi.org/10.3390/ijms24065420
  64. Ghaisas S, Maher J, Kanthasamy A. Gut microbiome in health and disease: linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol Ther. 2016;158:52-62. Available from: https://doi.org/10.1016/j.pharmthera.2015.11.012
  65. Kopic S, Geibel JP. Toxin-mediated diarrhea in the 21st century: the pathophysiology of intestinal ion transport in the course of ETEC, V. cholerae, and rotavirus infection. Toxins (Basel). 2010;2(8):2132-57. Available from: https://doi.org/10.3390/toxins2082132
  66. Zhao M, Chu J, Feng S, Guo C, Xue B, He K, Li L. Immunological mechanisms of inflammatory diseases caused by gut microbiota dysbiosis: a review. Biomed Pharmacother. 2023;164:114985. Available from: https://doi.org/10.1016/j.biopha.2023.114985
  67. Di Vincenzo F, Del Gaudio A, Petito V, Lopetuso LR, Scaldaferri F. Gut microbiota, intestinal permeability, and systemic inflammation: a narrative review. Intern Emerg Med. 2023. Available from: https://doi.org/10.1007/s11739-023-03374-w
  68. Badal VD, Vaccariello ED, Murray ER, Yu KE, Knight R, Jeste DV, Nguyen TT. The gut microbiome, aging, and longevity: a systematic review. Nutrients. 2020;12(12):3759. Available from: https://doi.org/10.3390/nu12123759
  69. Pang S, Chen X, Lu Z, Meng L, Huang Y, Yu X, Huang L, Ye P, Chen X, Liang J, Peng T, Luo W, Wang S. Longevity of centenarians is reflected by the gut microbiome with youth-associated signatures. Nat Aging. 2023;3:436–449. Available from: https://doi.org/10.1038/s43587-023-00389-y
  70. Ragonnaud E, Biragyn A. Gut microbiota as the key controllers of “healthy” aging of elderly people. Immun Ageing. 2021;18(1):2. Available from: https://doi.org/10.1186/s12979-020-00213-w
  71. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: an expanding universe. Cell. 2023;186:243-278. Available from: https://doi.org/10.1016/j.cell.2022.11.001
  72. D'Amato A, Di Cesare Mannelli L, Lucarini E, Man AL, Le Gall G, Branca JJV, et al. Fecal microbiota transplant from aged donor mice affects spatial learning and memory via modulating hippocampal synaptic plasticity and neurotransmission-related proteins in young recipients. Microbiome. 2020;8(1):140. Available from: https://doi.org/10.1186/s40168-020-00914-w
  73. Parker A, Romano S, Ansorge R, Aboelnour A, Le Gall G, Savva GM, et al. Fecal microbiota transfer between young and aged mice reverses hallmarks of the aging gut, eye, and brain. Microbiome. 2022;10(1):68. Available from: https://doi.org/10.1186/s40168-022-01243-w
  74. Smith P, Willemsen D, Popkes M, Metge F, Gandiwa E, Reichard M, Valenzano DR. Regulation of lifespan by the gut microbiota in the short-lived African turquoise killifish. eLife. 2017;6. Available from: https://doi.org/10.7554/eLife.27014
  75. Bárcena C, Valdés-Mas R, Mayoral P, Durand S, Rodríguez F, Fernández-García MT, et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat Med. 2019;25:1234–1242. Available from: https://doi.org/10.1038/s41591-019-0504-5
  76. Metchnikoff E. The prolongation of life: optimistic studies. New York, NY: GP Putnam's Sons; 1908. Translated by Mitchell PC.
  77. Ohland CL, MacNaughton WK. Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol. 2010;298. Available from: https://doi.org/10.1152/ajpgi.00243.2009
  78. Donato V, Ayala FR, Cogliati S, Bauman C, Costa JG, Leñini C, Grau R. Bacillus subtilis biofilm extends Caenorhabditis elegans longevity through downregulation of the insulin-like signaling pathway. Nat Commun. 2017;8:14332. Available from: https://doi.org/10.1038/ncomms14332
  79. Chen S, Chen L, Qi Y, Xu J, Ge Q, Fan Y, et al. Bifidobacterium adolescentis regulates catalase activity and host metabolism and improves healthspan and lifespan in multiple species. Nat Aging. 2021;1:991–1001. Available from: https://doi.org/10.1038/s43587-021-00129-0
  80. Milajerdi A, Mousavi SM, Sadeghi A, Salari-Moghaddam A, Parohan M, Larijani B, Esmaillzadeh A. The effect of probiotics on inflammatory biomarkers: a meta-analysis of randomized clinical trials. Eur J Nutr. 2020;59(2):633-649. Available from: https://doi.org/10.1007/s00394-019-01931-8
  81. Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients. 2013;5(4):1417-35. Available from: https://doi.org/10.3390/nu5041417
  82. Kerry RG, Patra JK, Gouda S, Park Y, Shin HS, Das G. Benefaction of probiotics for human health: a review. J Food Drug Anal. 2018;26:927-939. Available from: https://doi.org/10.1016/j.jfda.2018.07.002
  83. Anderson JW, Baird P, Davis RH Jr, Ferreri S, Knudtson M, Koraym A, Waters V, Williams CL. Health benefits of dietary fiber. Nutr Rev. 2009;67(4):188-205. Available from: https://doi.org/10.1111/j.1753-4887.2009.00189.x
  84. Patel S, Goyal A. The current trends and future perspectives of prebiotics research: a review. 3 Biotech. 2012;2:115–125. Available from: https://link.springer.com/article/10.1007/s13205-012-0044-x
  85. Healey G, Murphy R, Butts C, Brough L, Whelan K, Coad J. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: a randomized, double-blind, placebo-controlled, cross-over, human intervention study. Br J Nutr. 2018;119(2):176-189. Available from: https://doi.org/10.1017/S0007114517003440
  86. Mitchell CM, Davy BM, Ponder MA, McMillan RP, Hughes MD, Hulver MW, Neilson AP, Davy KP. Prebiotic inulin supplementation and peripheral insulin sensitivity in adults at elevated risk for type 2 diabetes: a pilot randomized controlled trial. Nutrients. 2021;13(9):3235. Available from: https://doi.org/10.3390/nu13093235
  87. Ravussin E, Redman LM, Rochon J, Das SK, Fontana L, Kraus WE, et al. A 2-year randomized controlled trial of human caloric restriction: feasibility and effects on predictors of health span and longevity. J Gerontol A Biol Sci Med Sci. 2015;70(9):1097-104. Available from: https://doi.org/10.1093/gerona/glv057
  88. Alssema M, Ruijgrok C, Blaak EE, Egli L, Dussort P, Vinoy S, et al. Effects of alpha-glucosidase-inhibiting drugs on acute postprandial glucose and insulin responses: a systematic review and meta-analysis. Nutr Diabetes. 2021;11:11. Available from: https://www.nature.com/articles/s41387-021-00152-5
  89. Harrison DE, Strong R, Allison DB, et al. Acarbose, 17-alpha-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell. 2014;13:273–282. Available from: https://doi.org/10.1111/acel.12170
  90. Mo D, Liu S, Ma H, Tian H, Yu H, Zhang X, et al. Effects of acarbose and metformin on the inflammatory state in newly diagnosed type 2 diabetes patients: a one-year randomized clinical study. Drug Des Devel Ther. 2019;13:2769-2776. Available from: https://doi.org/10.2147/DDDT.S208327
  91. Zhang XL, Yuan SY, Wan G, Yuan MX, Yang GR, Fu HJ, et al. The effects of acarbose therapy on reductions of myocardial infarction and all-cause death in T2DM during 10-year multifactorial interventions (The Beijing Community Diabetes Study 24). Sci Rep. 2021;11(1):4839. Available from: https://doi.org/10.1038/s41598-021-84015-0
  92. Zhang X, Fang Z, Zhang C, Xia H, Jie Z, Han X, et al. Effects of acarbose on the gut microbiota of prediabetic patients: A randomized, double-blind, controlled crossover trial. Diabetes Ther. 2017;8(2):293-307. Available from: https://doi.org/10.1007/s13300-017-0226-y
  93. Smith BJ, Miller RA, Ericsson AC, Harrison DC, Strong R, Schmidt TM. Changes in the gut microbiome and fermentation products concurrent with enhanced longevity in acarbose-treated mice. BMC Microbiol. 2019;19:130. Available from: https://doi.org/10.1186/s12866-019-1494-7
  94. Greer KA, Hughes LM, Masternak MM. Connecting serum IGF-1, body size, and age in the domestic dog. Age (Dordr). 2011;33(3):475-83. Available from: https://doi.org/10.1007/s11357-010-9226-3
  95. Loyal announces historic FDA milestone for large dog lifespan extension drug. Available from: https://loyalfordogs.com/posts/loyal-announces-historic-fda-milestone-for-large-dog-lifespan-extension-drug
  96. Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell. 1994;78(1):35-43. Available from: https://doi.org/10.1016/0092-8674(94)90519-0
  97. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, et al. Rapamycin fed late in life extends longevity of genetically heterogeneous mice. Nature. 2009;460:392–396. Available from: https://doi.org/10.1038/nature08221
  98. Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R, et al. Rapamycin, but not resveratrol or simvastatin, extends lifespan of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci. 2011;66:191–201. Available from: https://doi.org/10.1093/gerona/glq178
  99. Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, et al. Mechanisms of lifespan extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 2010;11(1):35-46. Available from: https://doi.org/10.1016/j.cmet.2009.11.002
  100. Robida-Stubbs S, Glover-Cutter K, Lamming DW, Mizunuma M, Narasimhan SD, Neumann-Haefelin E, et al. TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab. 2012;15(5):713-24. Available from: https://doi.org/10.1016/j.cmet.2012.04.004
  101. Dikicioglu D, Dereli Eke E, Eraslan S, Oliver SG, Kirdar B. Saccharomyces cerevisiae adapted to grow in the presence of low-dose rapamycin exhibit altered amino acid metabolism. Cell Commun Signal. 2018;16(1):85. Available from: https://doi.org/10.1186/s12964-018-0345-4
  102. Anisimov VN, Berstein LM, Popovich IG, Zabezhinski MA, Egormin PA, Piskunova TS, et al. If started early in life, metformin treatment increases lifespan and postpones tumors in female SHR mice. Aging (Albany NY). 2011;3(2):148-157. Available from: https://doi.org/10.18632/aging.100283
  103. Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, et al. Metformin improves healthspan and lifespan in mice. Nat Commun. 2013;4:2192. Available from: https://doi.org/10.1038/ncomms3192
  104. Yang Y, Lu X, Liu N, Ma S, Zhang Y, Jiang M, et al. Metformin decelerates aging clock in male monkeys. Cell. 2024; Available from: https://doi.org/10.1016/j.cell.2024.08.021
  105. Campbell JM, Bellman SM, Stephenson MD, Lisy K. Metformin reduces all-cause mortality and diseases of aging independent of its effect on diabetes control: a systematic review and meta-analysis. Ageing Res Rev. 2017;40:31-44. Available from: https://doi.org/10.1016/j.arr.2016.08.004
  106. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, et al. Corrigendum: Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2017;545(7652):116. Available from: https://doi.org/10.1038/nature15766
  107. Kim J, Yang G, Kim Y, Kim J, Ha J. AMPK activators: mechanisms of action and physiological activities. Exp Mol Med. 2016;48(4). Available from: https://doi.org/10.1038/emm.2016.16
  108. Zhao L, Cao J, Hu K, He X, Yun D, Tong T, et al. Sirtuins and their biological relevance in aging and age-related diseases. Aging Dis. 2020;11(4):927-945. Available from: https://doi.org/10.14336/AD.2019.0820
  109. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425:191-196. Available from: https://doi.org/10.1038/nature01960
  110. Imai S, Guarente L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 2014;24:464-471. Available from: https://doi.org/10.1016/j.tcb.2014.05.001
  111. Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending lifespan. Cell Metab. 2008;8(2):157-68. Available from: https://doi.org/10.1016/j.cmet.2008.06.011
  112. Yoshino J, Mills KF, Yoon MJ, Imai S. Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011;14(4):528-36. Available from: https://doi.org/10.1016/j.cmet.2011.08.014
  113. Ramsey KM, Mills KF, Satoh A, Imai S. Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell. 2008;7(1):78-88. Available from: https://doi.org/10.1111/j.1474-9726.2007.00355.x
  114. Yoshino J, Baur JA, Imai S. NAD+ intermediates: The biology and therapeutic potential of NMN and NR. Cell Metab. 2018;27(3):513-528. Available from: https://doi.org/10.1016/j.cmet.2017.11.002
  115. Freeberg KA, Udovich CC, Martens CR, Seals DR, Craighead DH. Dietary supplementation with NAD+-boosting compounds in humans: current knowledge and future directions. J Gerontol A Biol Sci Med Sci. 2023;78(12):2435-2448. Available from: https://doi.org/10.1093/gerona/glad185
  116. Fonseca-Correa JI, Correa-Rotter R. Sodium-glucose cotransporter 2 inhibitors mechanisms of action: A review. Front Med (Lausanne). 2021;8:777861. Available from: https://doi.org/10.3389/fmed.2021.777861
  117. Packer M. Critical reanalysis of the mechanisms underlying the cardiorenal benefits of SGLT2 inhibitors and reaffirmation of the nutrient deprivation signaling/autophagy hypothesis. Circulation. 2022;146:18:1383-1405. Available from: https://doi.org/10.1161/CIRCULATIONAHA.122.060283
  118. Ferrannini G, Hach T, Crowe S, Sanghvi A, Hall KD, Ferrannini E. Energy balance after sodium-glucose cotransporter 2 inhibition. Diabetes Care. 2015;38(9):1730-5. Available from: https://doi.org/10.2337/dc15-0630
  119. Ferrannini E, Baldi S, Frascerra S, Astiarraga B, Heise T, Bizzotto R, et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes. 2016;65:1190–1195. Available from: https://doi.org/10.2337/db15-1126
  120. Hoong CWS, Chua MWJ. SGLT2 inhibitors as calorie restriction mimetics: Insights on longevity pathways and age-related diseases. Endocrinology. 2021;162. Available from: https://doi.org/10.1210/endocr/bqab079
  121. Ferrannini E, Baldi S, Frascerra S, Astiarraga B, Heise T, Bizzotto R, et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes. 2016;65:1190–1195. Available from: https://doi.org/10.2337/db15-1126
  122. Pietschner R, Kolwelter J, Bosch A, Striep K, Jung S, Kannenkeril D, et al. Effect of empagliflozin on ketone bodies in patients with stable chronic heart failure. Cardiovasc Diabetol. 2021;20:219. Available from: https://doi.org/10.1186/s12933-021-01410-7
  123. Hawley SA, Ford RJ, Smith BK, Gowans GJ, Mancini SJ, Pitt RD, et al. The Na+/glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes. 2016;65(9):2784-94. Available from: https://doi.org/10.2337/db16-0694
  124. Packer M. Autophagy-dependent and -independent modulation of oxidative and organellar stress in the diabetic heart by glucose-lowering drugs. Cardiovasc Diabetol. 2020;19:62. Available from: https://doi.org/10.1186/s12933-020-01041-4
  125. Deng X, Zhang C, Wang P, Wei W, Shi X, Wang P, et al. Cardiovascular benefits of empagliflozin are associated with gut microbiota and plasma metabolites in type 2 diabetes. J Clin Endocrinol Metab. 2022;107(7):1888-1896. Available from: https://doi.org/10.1210/clinem/dgac210
  126. Afsar B, Afsar RE, Lentine KL. The impact of sodium-glucose cotransporter inhibitors on gut microbiota: a scoping review. J Diabetes Metab Disord. 2024;23:497-508. Available from: https://link.springer.com/article/10.1007/s40200-024-01435-1
  127. Kim MN, Moon JH, Cho YM. Sodium-glucose cotransporter-2 inhibition reduces cellular senescence in the diabetic kidney by promoting ketone body-induced NRF2 activation. Diabetes Obes Metab. 2021;23:2561-71. Available from: https://doi.org/10.1111/dom.14503
  128. Katsuumi G, Shimizu I, Suda M, Yoshida Y, Furihata T, Joki Y, et al. SGLT2 inhibition eliminates senescent cells and alleviates pathological aging. Nat Aging. 2024;4:926–938. Available from: https://doi.org/10.1038/s43587-024-00642-y
  129. Mone P, Varzideh F, Jankauskas SS, Pansini A, Lombardi A, Frullone S, et al. SGLT2 inhibition via empagliflozin improves endothelial function and reduces mitochondrial oxidative stress: insights from frail hypertensive and diabetic patients. Hypertension. 2022;79(8):1633-1643. Available from: https://doi.org/10.1161/HYPERTENSIONAHA.122.18954
  130. Xu J, Kitada M, Ogura Y, Liu H, Koya D. Dapagliflozin restores impaired autophagy and suppresses inflammation in high glucose-treated HK-2 cells. Cells. 2021 Jun 10;10(6):1457. Available from: https://doi.org/10.3390/cells10061457
  131. Packer M. SGLT2 inhibitors: role in protective reprogramming of cardiac nutrient transport and metabolism. Nat Rev Cardiol. 2023;20:443–462. Available from: https://www.nature.com/articles/s41569-022-00824-4
  132. Hoong CWS, Chua MWJ. SGLT2 inhibitors as calorie restriction mimetics: insights on longevity pathways and age-related diseases. Endocrinology. 2021;162(8). Available from: https://doi.org/10.1210/endocr/bqab079
  133. Hess DA, Terenzi DC, Verma S. Heal thyself: SGLT2 inhibition limits regenerative cell exhaustion and heals damaged vessels. Diabetes. 2021;70(8):1620–1622. Available from: https://doi.org/10.2337/db21-0574
  134. Moix S, Sadler MC, Kutalik Z, Auwerx C. Breaking down causes, consequences, and mediating effects of telomere length variation on human health. Genome Biol. 2024;25:125. Available from: https://doi.org/10.1186/s13059-024-03269-9
  135. Aguilera A, García-Muse T. Causes of genome instability. Annu Rev Genet. 2013;47:1-32. Available from: https://doi.org/10.1146/annurev-genet-111212-133232
  136. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117-28. Available from: https://doi.org/10.1056/NEJMoa1504720
  137. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644-657. Available from: https://doi.org/10.1056/NEJMoa1612971
  138. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347-357. Available from: https://doi.org/10.1056/NEJMoa1812389
  139. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383(15):1413-1424. Available from: https://doi.org/10.1056/NEJMoa2022190
  140. Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021;385(16):1451-1461. Available from: https://doi.org/10.1056/NEJMoa2107036
  141. McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995-2008. Available from: https://doi.org/10.1056/NEJMoa1911303
  142. Wang Y, Gao T, Meng C, Li S, Bi L, Geng Y, et al. Sodium-glucose co-transporter 2 inhibitors in heart failure with mildly reduced or preserved ejection fraction: an updated systematic review and meta-analysis. Eur J Med Res. 2022;27(1):314. Available from: https://doi.org/10.1186/s40001-022-00642-2
  143. Lazzeroni D, Villatore A, Souryal G, Pili G, Peretto G. The aging heart: a molecular and clinical challenge. Int J Mol Sci. 2022;23:16033. Available from: https://doi.org/10.3390/ijms232416033
  144. Chiao YA, Rabinovitch PS. The aging heart. Cold Spring Harb Perspect Med. 2015;5(9). Available from: https://doi.org/10.1101/cshperspect.a025148
  145. Paneni F, Diaz Cañestro C, Libby P, Lüscher TF, Camici GG. The aging cardiovascular system: understanding it at the cellular and clinical levels. J Am Coll Cardiol. 2017;69(15):1952-1967. Available from: https://doi.org/10.1016/j.jacc.2016.12.002
  146. Li H, Hastings MH, Rhee J, Trager LE, Roh JD, Rosenzweig A. Targeting age-related pathways in heart failure. Circ Res. 2020;126:533–551. Available from: https://doi.org/10.1161/circresaha.119.315889
  147. Michaud M, Balardy L, Moulis G, Gaudin C, Peyrot C, Vellas B, et al. Proinflammatory cytokines, aging, and age-related diseases. J Am Med Dir Assoc. 2013;14(12):877-82. Available from: https://doi.org/10.1016/j.jamda.2013.05.009
  148. Kritchevsky SB, Cesari M, Pahor M. Inflammatory markers and cardiovascular health in older adults. Cardiovasc Res. 2005;66:265–275. Available from: https://doi.org/10.1016/j.cardiores.2004.12.026
  149. Desjardins J, Zhang Y, Thai K, Kabir G, Gilbert R, Connelly K. Empagliflozin reduces LV mass and improves diastolic function in an experimental model of heart failure with preserved EF. Can J Cardiol. 2022;33.
  150. Verma S, Mazer CD, Yan AT, Mason T, Garg V, Teoh H, et al. Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: the EMPA-HEART CardioLink-6 randomized clinical trial. Circulation. 2019;140(21):1693-1702. Available from: https://doi.org/10.1161/circulationaha.119.042375
  151. Novo G, Guarino T, Di Lisi D, Biagioli P, Carluccio E. Effects of SGLT2 inhibitors on cardiac structure and function. Heart Fail Rev. 2023;28(3):697-707. Available from: https://doi.org/10.1007/s10741-022-10256-4
  152. Lopaschuk GD, Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: a state-of-the-art review. JACC Basic Transl Sci. 2020;5(6):632-644. Available from: https://doi.org/10.1016/j.jacbts.2020.02.004
  153. Adam CA, Anghel R, Marcu DTM, Ovidiu Mitu O, Roca M, Mitu F. Impact of sodium-glucose cotransporter 2 (SGLT2) inhibitors on arterial stiffness and vascular aging—what do we know so far? (A narrative review). Life (Basel). 2022;12(6):803. Available from: https://doi.org/10.3390/life12060803
  154. Weinstein JR, Anderson S. The aging kidney: physiological changes. Adv Chronic Kidney Dis. 2010;17(4):302-307. Available from: https://doi.org/10.1053/j.ackd.2010.05.002
  155. Fang Y, Gong AY, Haller ST, Dworkin LD, Liu Z, Gong R. The ageing kidney: molecular mechanisms and clinical implications. Ageing Res Rev. 2020;63:101151. Available from: https://doi.org/10.1016/j.arr.2020.101151
  156. Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383(15):1436-1446. Available from: https://doi.org/10.1056/nejmoa2024816
  157. The EMPA-KIDNEY Collaborative Group; Herrington WG, Staplin N, Wanner C, Green JB, Hauske SJ, et al. Empagliflozin in patients with chronic kidney disease. N Engl J Med. 2023;388(2):117-127. Available from: https://doi.org/10.1056/nejmoa2204233
  158. Perkovic V, de Zeeuw D, Mahaffey KW, Fulcher G, Erondu N, Shaw W, et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomized clinical trials. Lancet Diabetes Endocrinol. 2018;6(9):691-704. Available from: https://doi.org/10.1016/s2213-8587(18)30141-4
  159. Kluger AY, Tecson KM, Lee AY, Lerma EV, Rangaswami J, Lepor NE, et al. Class effects of SGLT2 inhibitors on cardiorenal outcomes. Cardiovasc Diabetol. 2019;18(1):99. Available from: https://doi.org/10.1186/s12933-019-0903-4
  160. Xu XM, Cai GY, Bu R, Wang WJ, Bai XY, Sun XF, et al. Beneficial effects of caloric restriction on chronic kidney disease in rodent models: a meta-analysis and systematic review. PLoS One. 2015;10(12). Available from: https://doi.org/10.1371/journal.pone.0144442
  161. Packer M. Critical reanalysis of the mechanisms underlying the cardiorenal benefits of SGLT2 inhibitors and reaffirmation of the nutrient deprivation signaling/autophagy hypothesis. Circulation. 2022;146(18):1383-1405. Available from: https://doi.org/10.1161/circulationaha.122.061732
  162. Au PCM, Tan KCB, Lam DCL, Cheung BWY, Wong ICK, Kwok WC, et al. Association of sodium-glucose cotransporter 2 inhibitor vs dipeptidyl peptidase-4 inhibitor use with risk of incident obstructive airway disease and exacerbation events among patients with type 2 diabetes in Hong Kong. JAMA Netw Open. 2023;6(1). Available from: https://doi.org/10.1001/jamanetworkopen.2022.51177
  163. Jeong HE, Park S, Noh Y, Bea S, Filton KB, Yu OHY, et al. Association of adverse respiratory events with sodium-glucose cotransporter 2 inhibitors versus dipeptidyl peptidase 4 inhibitors among patients with type 2 diabetes in South Korea: a nationwide cohort study. BMC Med. 2023;21:47. Available from: https://doi.org/10.1186/s12916-023-02765-2
  164. Hierro-Bujalance C, Infante-Garcia C, Marco A, Herrera M, Carranza-Naval MJ, Suarez J, et al. Empagliflozin reduces vascular damage and cognitive impairment in a mixed murine model of Alzheimer’s disease and type 2 diabetes. Alzheimers Res Ther. 2020;12:40. Available from: https://doi.org/10.1186/s13195-020-00607-4
  165. Siao WZ, Lin TK, Huang JY, Tsai CF, Jong GP. The association between sodium-glucose cotransporter 2 inhibitors and incident dementia: a nationwide population-based longitudinal cohort study. Diab Vasc Dis Res. 2022;19(3):14791641221098168. Available from: https://doi.org/10.1177/14791641221098168
  166. Dutka M, Bobiński R, Francuz T, Garczorz W, Zimmer K, Ilczak T, et al. SGLT-2 inhibitors in cancer treatment—mechanisms of action and emerging new perspectives. Cancers (Basel). 2022;14(23):5811. Available from: https://doi.org/10.3390/cancers14235811
  167. Benedetti R, Benincasa G, Glass K, Chianese U, Vietri MT, Congi R, et al. Effects of novel SGLT2 inhibitors on cancer incidence in hyperglycemic patients: a meta-analysis of randomized clinical trials. Pharmacol Res. 2022;175:106039. Available from: https://doi.org/10.1016/j.phrs.2021.106039
  168. Mori Y, Duru OK, Tuttle KR, Fukuma S, Taura D, Harada N, et al. Sodium-glucose cotransporter 2 inhibitors and new-onset type 2 diabetes in adults with prediabetes: systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab. 2022;108(1):221-231. Available from: https://doi.org/10.1210/clinem/dgac591
  169. Cardoso R, Graffunder FP, Ternes CMP, Fernandes A, Rocha AV, Fernandes G, et al. SGLT2 inhibitors decrease cardiovascular death and heart failure hospitalizations in patients with heart failure: a systematic review and meta-analysis. EClinicalMedicine. 2021;36:100933. Available from: https://doi.org/10.1016/j.eclinm.2021.100933
  170. Bhattarai M, Salih M, Regmi M, Al-Akchar M, Deshpande R, Niaz Z, et al. Association of sodium-glucose cotransporter 2 inhibitors with cardiovascular outcomes in patients with type 2 diabetes and other risk factors for cardiovascular disease: a meta-analysis. JAMA Netw Open. 2022;5(1). Available from: https://doi.org/10.1001/jamanetworkopen.2021.42078
  171. Silverii GA, Monami M, Mannucci E. Sodium-glucose co-transporter-2 inhibitors and all-cause mortality: a meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2020;23:1052-1056. Available from: https://doi.org/10.1111/dom.14286
  172. Salah HM, Al'Aref SJ, Khan MS, Al-Hawwas M, Vallurupalli S, Mehta JL, et al. Effect of sodium-glucose cotransporter 2 inhibitors on cardiovascular and kidney outcomes–systematic review and meta-analysis of randomized placebo-controlled trials. Am Heart J. 2020;232:10-22. Available from: https://doi.org/10.1016/j.ahj.2020.10.064
  173. Chung MC, Hsu HT, Chang CH, Hung PH, Hsiao PJ, Wu LY, et al. Association of SGLT2 inhibitors with lower incidence of death in type 2 diabetes mellitus and causes of death analysis. Sci Rep. 2022;12:10147. Available from: https://doi.org/10.1038/s41598-022-13760-7
  174. Miller RA, Harrison DE, Allison DB, Bogue M, Debarba L, Diaz V, et al. Canagliflozin extends life span in genetically heterogeneous male but not female mice. HERO. 2020;5. Available from: http://dx.doi.org/10.1172/jci.insight.140019
  175. Snyder JM, Casey KM, Galecki A, Harrison DE, Jayarathne H, Kumar N, et al. Canagliflozin retards age-related lesions in heart, kidney, liver, and adrenal gland in genetically heterogeneous male mice. GeroScience. 2022;44(6):1191-1204.
  176. Katsuumi G, Shimizu I, Suda M, Yoshida Y, Furihata T, Joki Y, et al. SGLT2 inhibition eliminates senescent cells and alleviates pathological aging. Nat Aging. 2024;4:926-938. Available from: https://www.nature.com/articles/s43587-024-00642-y

Figures:

Figure 1

Figure 1

Figure 1

Figure 2

Figure 1

Figure 3

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?